资料摘要 | 生物医疗领域的超高精度3D打印模具需求 涵盖微流控芯片 微针 仿生器件等
市场背景
从可穿戴和植入式智能传感器到生物芯片,从医疗设备到量子计算机,微纳加工一直是工程前沿,其为制造、材料、能源、机器人和生物医学创造了新的可能性。众多领域的精加工方面都会涉及极小尺寸和高质量微纳结构模具的制作,如微米级通道的微流控芯片、微结构传感器、生物活性微针等。从模具制备技术上细分,可分为直接铸造和间接倒模两种,其中间接倒模技术是其中一类常见的技术手段。
超高精度3D打印模具的优势
3D 打印提供了一种新的、高效的方法来快速迭代、创建微纳结构模具,而传统的3D打印技术(如数字光处理技术(DLP)、熔融沉积(FDM)3D打印等)精度有限,局限于50-100μm,打印出的微通道较为粗糙,如尺寸偏大,通道侧壁表面粗糙度高等,不适合应用于微纳结构的倒模。利用超高精度3D打印技术,研究人员可轻松创建定制更为精细的微结构以满足特定的应用需求。托托科技自研的织雀系列微纳3D打印设备融合了先进的光刻技术和精密的制造工艺,涵盖1 μm到20 μm的光刻精度,可应用于构建尺寸更小、微通道表面粗糙度更低的微纳 |